DATA
Global Actual Evapotranspiration
• 70 m gridded data from ECOSTRESS, 2018-current
[Cite] Fisher, J.B., Lee, B., Purdy, A.J., Halverson, G.H., Dohlen, M.B., Cawse-Nicholson, K., Wang, A., Anderson, R.G., Aragon, B., Arain, M.A., Baldocchi, D.D., Baker, J.M., Barral, H., Bernacchi, C.J., Bernhofer, C., Biraud, S.C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro-Contreras, S., Chun, J., Conrad, B.J., Cremonese, E., Demarty, J., Desai, A.R., De Ligne, A., Foltýnová, L., Goulden, M.L., Griffis, T.J., Grünwald, T., Johnson, M.S., Kang, M., Kelbe, D., Kowalska, N., Lim, J.-H., Maïnassara, I., McCabe, M.F., Missik, J.E.C., Mohanty, B.P., Moore, C.E., Morillas, L., Morrison, R., Munger, J.W., Posse, G., Richardson, A.D., Russell, E.S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt, M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson, M., Hain, C., French, A., Wood, E., Hook, S., 2020. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research 56(4): 1-20.
• 0.5 deg gridded global, monthly ET ascii files, 1986-1995
• 1.0 deg gridded global, monthly ET ascii files, 1984-2006
[Cite] Fisher, J.B., Tu, K., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment 112: 901-919.
• 36 km gridded global, monthly ET netcdf files, 2002-2017
[Cite] Fisher, J.B., Tu, K., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment 112: 901-919.
[Cite] Purdy, A.J., Fisher, J.B., Goulden, M.L., Colliander, A., Halverson, G., Tu, K., Famiglietti, J.S., 2018. SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment 219: 1-14.
• 9 km gridded (EASE grid) global, monthly ET netcdf files, 2015-2017 (PT-JPL enhanced with SMAP soil moisture; higher accuracy): email me (2.5 GB)
[Cite] Purdy, A.J., Fisher, J.B., Goulden, M.L., Colliander, A., Halverson, G., Tu, K., Famiglietti, J.S., 2018. SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment 219: 1-14.
Global Potential Evapotranspiration
• 0.5° gridded global, monthly potential ET ascii files, 1986-1995 – Priestley Taylor
• 0.5° gridded global, monthly potential ET ascii files, 1986-1995 – Penman-Monteith
• 0.5° gridded global, monthly potential ET ascii files, 1986-1995 – Thornthwaite
[Cite] Fisher, J.B., Whittaker, R., Malhi, Y., 2011. ET Come Home: Potential evapotranspiration in geographical ecology. Global Ecology and Biogeography 20: 1-18.
Global Terrestrial Vegetation Nutrient Limitation
• 0.5° gridded global nutrient limitation in terrestrial vegetation contemporary
[Cite] Fisher, J.B., Badgley, G., Blyth, E., 2012. Global nutrient limitation in terrestrial vegetation. Global Biogeochemical Cycles 26, GB3007, doi:10.1029/2011GB004252.
Global Canopy Height
• 1 km gridded global vegetation canopy height for trees > 5 m from ICESat/GLAS
[Cite] Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. Mapping forest canopy height globally with spaceborne LiDAR. Journal of Geophysical Research–Biogeosciences 116: G04021, doi:10.1029/2011JG001708.
Remotely Sensed Mycorrhizal Association for 4 Regions in the US
• 30 m gridded mycorrhizal association from Landsat
[Cite] Fisher, J.B., Sweeney, S., Brzostek, E.R., Evans, T.P., Johnson, D.J., Myers, J.A., Bourg, N.A., Wolf, A.T., Howe, R.W., Phillips, R.P., 2016. Tree–mycorrhizal associations detected remotely from canopy spectral properties. Global Change Biology 22(7): 2596-2607.
Global Near Surface Meteorology (air temperature, water vapor pressure)
• 5 km daily gridded netcdf MODIS tiles, 2001-2014: email me (82 GB total)
• 1 day sample for Aug 1, 2014 (15 MB)
[Cite] Famiglietti, C.A., Fisher, J.B., Halverson, G., Borbas, E.E., 2018. Global validation of MODIS near-surface air and dew point temperatures. Geophysical Research Letters 45: doi.org/10.1029/2018GL077813.
Sap Flow
• Quercus douglasii (Blue Oak trees) – Tonzi Ranch, 30-minutes, 2005 (6.3MB, Excel)
• Pinus ponderosa (Ponderosa Pine trees) – Blodgett Forest, 30-minutes, 2005 (7.7MB, Excel)
- Note: data provided are raw thermocouple temperatures that can be cleaned, gap-filled, and converted to sap velocity/flow according to the user.
[Cite] Fisher, J.B., Baldocchi, D.D., Misson, L., Dawson, T., Goldstein, A.H., 2007. What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology 27(4): 597-610.
MODELS
Evapotranspiration (PT-JPL)
• PT-JPL: MATLAB for spatial arrays (e.g., remote sensing)
• PT-JPL: Python (global)
• PT-JPL: Python (high res)
• PT-JPL: Excel for point values (e.g., flux tower)
• PT-JPL: OpenET implementation
[Cite] Fisher, J.B., Tu, K., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment 112: 901-919.
Plant Nitrogen & Phosphorus Uptake (FUN: Fixation & Uptake of Nutrients)
[Cite] Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C., Tan, S.-Y., 2010. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles 24: GB1014, doi:10.1029/2009GB003621.
[Cite] Braghiere, R.K., Fisher, J.B., Allen, K., Brzostek, E., Shi, M., Yang, X., Ricciuto, D.M., Fisher, R.A., Zhu, Q., Phillips, R.P, 2022. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. Journal of Advances in Modeling Earth Systems 14(8): 1-23.